PLASMACHEMISCHE UNTERSUCHUNGEN AN TRIFLUORMETHYL-VERBINDUNGEN. HOCHFREQUENZENTLADUNGEN IN (CF₃)₂ Hg UND (CF₃)₄ Ge.

REINT EUJEN

Anorganische Chemie, FB 9, Universität-Gesamthochschule, 5600 Wuppertal 1 (B.R.D.)

SUMMARY

Radio frequency discharges through $(CF_3)_2$ Hg and $(CF_3)_4$ Ge have been investigated and compared with C_2F_6 . While $(CF_3)_2$ Hg yields elemental mercury and product distributions similar to C_2F_6 , decomposition of $(CF_3)_4$ Ge produces GeF₄ and greater amounts of fluoro-olefins. The u.v. emission spectra of C_2F_6 and $(CF_3)_4$ Ge have been shown to originate from difluorocarbene, CF_2 .

ZUSAMMENFASSUNG

Die Reaktionen von $(CF_3)_2$ Hg und $(CF_3)_4$ Ge in Hochfrequenzentladungen wurden in Relation zum C_2F_6 untersucht. Während $(CF_3)_2$ Hg ähnliche Produktverteilungen wie C_2F_6 ergibt, führt die Entladung in $(CF_3)_4$ Ge zur Bildung von GeF₄ und größeren Anteilen an Fluorolefinen. Die UV-Emissionen der Entladungen in C_2F_6 und $(CF_3)_4$ Ge wurden als ${}^1B_1 \rightarrow {}^1A_1$ Übergang des Difluorcarbens, CF_2 , identifiziert.

EINFÜHRUNG

Trifluormethyl-Radikale haben bei der Synthese thermisch labiler Verbindungen des Typs $(CF_3)_n$ M eine besondere Bedeutung erhalten [1, 2]. Die Erzeugung der Radikale erfolgt im allgemeinen durch Hochfrequenzentladungen in C_2F_6 , die auf Grund der vergleichsweise schwachen C-C-Bindung ohne C-F-Spaltung abläuft. Eine wesentliche Voraussetzung für die Darstellung relativ labiler Verbindungen besteht darin, eine thermische Aufheizung des Systems zu vermeiden, wobei sich Hochfrequenzentladungen mit Ausgangsleistungen von < 10 W als besonders geeignet erwiesen haben. Als Testsystem ist insbesondere die Umsetzung mit HgX, [3] oder elementarem Quecksilber [4,5] zur Anwendung gekommen, die jeweils in der Bildung von (CF.), Hg resultiert. (CF,), Hg ist auf Grund seiner thermischen Stabilität jedoch nicht als typisch anzusehen und ist zudem auch leicht auf anderem Wege zugänglich [6, 7]. Der geringe Gesamtumsatz deutet ferner darauf hin, daß in der Entladung die Rückreaktionen von erheblicher Bedeutung sind. so daß sich allgemein der Einsatz von Per(trifluormethyl)element-Verbindungen zur Erzeugung von CF,-Radikalen bei geringen Einstrahlungsenergien anbietet. Im Umsatz mit Halogeniden könnte zugleich das erzeugte Metallatom zum Abfang von Halogenen genutzt werden. Weiterhin kann davon ausgegangen werden, daß im Vergleich zur Entladung in C₂F₆ höhere Radikalkonzentrationen erzeugt werden können, was für eine spektroskopische Untersuchung und Bestimmung der Molekülparameter des CF.-Radikals von Bedeutung ist.

Im folgenden wird über eine Untersuchung der plasmachemischen Zersetzung der Verbindungen $(CF_3)_2$ Hg und $(CF_3)_4$ Ge im Vergleich zum C_2F_6 berichtet.

EXPERIMENTELLES

Bis(trifluormethyl)quecksilber [6] wurde im Molmaßstab durch Decarboxylierung von $Hg(OCOCF_3)_2$ in Gegenwart von K_2CO_3 bei 130 - 170° und 20 mbar mit Ausbeuten von 60% erhalten. Die Reinigung erfolgte durch zweifache Sublimation. (CF₃)₄Ge wurde durch Umsetzung von (CF₃)₂Hg mit GeI₄ im Verhältnis 2.5:1 bei 125° dargestellt [7]. Zur Auftrennung des Reaktionsgemisches wurde eine Drehbandkolonne verwendet.

Die Entladung erfolgte in einem Rohr aus Duranglas mit 20 mm Durchmesser bei Drücken von 0.1 - 0.3 Torr. Hochfrequenzenergie (13.56 MHz) wurde mit einem 100 W-Radiofrequenzgenerator der Fa. Tegal, Calif., USA, erzeugt und induktiv eingekoppelt (Leistungsaufnahme ca. 5 W). Flüchtige, bei -196°C kondensierbare Produkte wurden ausgefroren und nach üblicher Vakuumtechnik gehandhabt und getrennt. CF, wurde infrarotspektroskopisch nachgewiesen, jedoch nicht quantitativ erfaβt. Die Analyse der übrigen Produkte erfolgte mittels Gaschromatographie (Varian 3700, 8m x 6mm SE-30 Säule), IR-(PE 580), Raman-(Cary 82 mit Kr⁺-Laser-Anregung) und Massenspektroskopie (Varian 311 A). Die quantitative Zusammensetzung der Isomerengemische erfolgte mittels ¹⁹F-NMR-Spektroskopie (Varian EM 390, 84.67 MHz). Die Emissionsspektren wurden mit einem 0.4 m-Monochromator (Spektrale Auflösung 0.2 nm) registriert. Um Störungen des Monochromatorantriebs und des Photomultipliers zu verhindern, erfolgte die Anregung mittels Mikrowellen (Mikrotron 200 Mark 3).

ERGEBNISSE UND DISKUSSION

Auf Grund ihres unterschiedlichen Akzeptorverhaltens gegenüber Fluorid-Ionen unterscheiden sich Bis(trifluormethyl)quecksilber, (CF₃)₂Hg, und Tetrakis(trifluormethyl)germanium, (CF3), Ge, in ihrem thermischen Verhalten erheblich. Die Pyrolyse von (CF3)2 Hg in Glasgefäßen verläuft oberhalb von 200°C unter quantitativer Abscheidung von elementarem Quecksilber. An den Wandungen erfolgt Zersetzung der CF3-Radikale unter Bildung von SiF., BF., und CF-Polymeren. Dagegen begünstigt im Fall des (CF3)4 Ge die hohe Ge-F-Bindungsenergie bereits bei ca. 130°C die direkte Eliminierung von CF. das im allgemeinen quantitativ zu c-C.F. trimerisiert. Für Entladungen sind daher auch unterschiedliche Mechanismen zu erwarten. wie durch die in Tabelle 1 wiedergegebene Produktverteilung bestätigt wird. Im Rahmen der Reproduzierbarkeit wurden für C₂F₆ und (CF₃)₂Hg sehr ähnliche Mengenverhältnisse von höheren Fluorkohlenwasserstoffen gefunden, so da β ein analoger Mechanismus wahrscheinlich ist. Die Zersetzung von (CF3)2Hg erfolgt unter den gegebenen Voraussetzungen zu mehr als 99.5%:

 $(CF_3)_2 Hg \xrightarrow{f} Hg^{*} + 2 CF_3$ (1)

477

TABELLE 1

C ₂ F ₆	(CF ₃) ₂ Hg	(CF3)4Ge
100	100	100
8	9	33
2	2.4	12
ca.0.5	0.8	<4
4	2.5	58
-	-	15
	0.7	8
		17
		143
		30
F ₂		5
	C ₂ F ₆ 100 8 2 ca.0.5 4 - - - -	$\begin{array}{c c} C_2 F_6 & (CF_3)_2 Hg \\ \hline 100 & 100 \\ 8 & 9 \\ 2 & 2.4 \\ ca.0.5 & 0.8 \\ 4 & 2.5 \\ - & - \\ - & 0.7 \\ \hline \end{array}$

Produktverteilung in Entladungen von C_2F_6 , $(CF_3)_2$ Hg und $(CF_3)_4$ Ge

^aSumme aller Isomeren

Primärer Folgeproze β ist die Rekombination der CF₃-Radikale, die praktisch ohne Aktivierung abläuft [8], und somit zur gleichen Situation wie bei der Entladung in C₂F₆ selbst führt:

$$C_2 F_6 \xleftarrow{4} CF_3 \cdot + CF_3 \cdot$$
(2)

Ebenso wie bei der hochenergetischen Radiolyse von C_2F_6 [9] müssen jedoch auch prinzipiell Ionisierungsprozesse in Erwägung gezogen werden, die jedoch bei der Synthese von CF₃-Derivaten auf Grund der Instabilität der Kationen keine Rolle spielen dürften.

Für die Entstehung höherer Fluorkohlenwasserstoffe sowie des $C_2 F_4$ bieten sich zwei Mechanismen an, Fluorabstraktion mit Radikalrekombination und Carbeneinschiebungen. Die schwach blaue Farbe der $C_2 F_6$ -Entladung deutet auf eine im UV-Bereich liegende Emission hin. Das Emissionsspektrum (Abb. 1) einer Mikrowellenentladung durch $C_2 F_6$ (15 W Eingangsleistung) zeigt die v_2 '-Progression des ${}^1B_1 \rightarrow {}^1A_1$ -Ubergangs des CF₂ und ist identisch mit Spektren von CF₂X₂-Systemen [10].

 $C_2 F_6$

Die Entladungen in $(CF_3)_2$ Hg sind gekennzeichnet durch die sehr starken Atomlinien des Quecksilbers, so daß CF_2 nicht eindeutig identifiziert werden konnte.

$$CF_3 \stackrel{*}{\longrightarrow} CF_2 \stackrel{*}{\longrightarrow} + F \circ$$
 (3)

$$CF_3 \cdot + F \cdot \longrightarrow CF_4$$
 (4)

Rekombination des CF_2 führt zu C_2F_4 . Im Gegensatz zur Pyrolyse wird keine weitere CF_2 -Anlagerung zum $c-C_3F_6$ beobachtet, so daß zu (5) alternative Prozesse in Betrachtung gezogen werden müssen:

$$2 \operatorname{CF}_{2} \longrightarrow \operatorname{C}_{2} \operatorname{F}_{4}$$
(5)

$$CF_2 \xrightarrow{CF_3} C_2F_5 \cdot \xrightarrow{CF_3} C_2F_4 \qquad (6)$$

 C_2F_5 -Derivate konnten im System C_2F_6/S_8 isoliert werden [11]. Auch der relativ große Anteil an C_5F_8 deutet auf signifikante C_2F_5 -Konzentrationen hin, die alternativ durch Fluorübertragung gebildet werden können:

$$CF_3 \cdot + C_2F_6 \xrightarrow{} CF_4 + C_2F_5 \cdot \tag{7}$$

Allgemein führt dieser Mechanismus zum Aufbau höherer gesättigter Fluorkohlenwasserstoffe

$$CF_{3} \cdot + C_{n}F_{2n+2} \xrightarrow{\frown} CF_{4} + C_{n}F_{n+1} \cdot$$
(8)

$$CF_{3} \cdot + C_{n}F_{2n+1} \cdot \longrightarrow C_{n+1}F_{2(n+1)+2}$$
(9)

Tabelle 2 gibt die NMR-spektroskopisch ermittelten relativen Zusammensetzungen der C_{4} - und C_{5} - Fraktionen der $C_{2}F_{6}$ - bzw. (CF₃), Hg-Entladungen wieder. Auffallend ist der hohe Anteil an $(CF_3)_{\star}C$, der vorwiegend darauf zurückzuführen ist, daß eine sekundäre Zersetzung im Plasma ausschlieβlich (CF₃)₃Co-Radikale hervorruft. Die wahrscheinlichste Abreaktion ist jedoch wiederum Rekombination mit $CF_3 \cdot -Radikalen$, so daß die effektive Lebensdauer erheblich größer ist als die von i-C₅F₁₂ und n-C₅F₁₂ mit unterschiedlichen Möglichkeiten der C-C-Fragmentierung. Generell ergeben C2F6-Entladungen vorwiegend n-Isomere, im Falle des Verhältnisses n-C₅F₁₂/i-C₅F₁₂ sogar eine Verdopplung des statistischen Verhältnisses. Im Einklang mit den Ergebnissen der (CF,), Hg-Entladung lassen die Fluorübertragungsreaktionen (8) eine Anreicherung sekundärer und tertiärer Radikale und somit Kettenverzweigung erwarten. Der hohe n-Isomerengehalt der $C_2 F_6$ -Entladung weist auf hohe, nach (7) gebildete $C_2 F_5$ --Konzentrationen hin, die bei Rekombinationen (9) mit CF, --Radikalen konkurrieren und zur Kettenverlängerung führen.

Wird die Entladung in Gegenwart von flüchtigen Halogeniden wie z.B. SnBr, durchgeführt, erhält man zusätzlich neben Spuren von CF₃Sn-Verbindungen [3], Fluorbromkohlenwasserstoffe

$$\operatorname{SnBr}_{4} \longrightarrow \operatorname{SnBr}_{3} \cdot + \operatorname{Br} \cdot$$
 (10)

$$C_n F_{2n+1} \cdot + Br \cdot \longrightarrow C_n F_{2n+1} Br$$
 (11)

$$C_n F_{2n+1} Br \xrightarrow{\cdot CF_3, Br}{- CF_4} C_n F_{2n} Br_2 \longrightarrow etc$$
 (12)

Das Isomerenverhältnis $n-C_3F_7Br(58\%)/i-C_3F_7Br(42\%)$, ausgehend von $(CF_3)_2Hg$, entspricht dem Verhältnis $n-C_4F_{10}$: $i-C_4F_{10}$ ° Bei den C_2 -Fluorkohlenwasserstoffen werden neben C_2F_5Br auch $BrCF_2-CF_2Br$, CF_3CFBr_2 , $CF_2Br-CFBr_2$ und CF_3CBr_3 gefunden.

 ເນ 	
비	
BEL	
ΤA	

Relative Häufigkeit der Isomeren der C_4 – und C_5-Fraktionen und ihre NWR-Parameter

	C2F4	(CF3)2Hg	ð [ppm] ^a	J(FF)[Hz]b
(CF ₃ -CF ₂)2	02	52	82.1 ^c , 126.6 ^c	12 + 13 : 9.6
(CF ₃) ₃ CF	30	48	75.0, 188.0	6.1
(CF ₃ -CF ₂) ₂ CF ₂	58	32	81.9 ^c , 125.8 ^c , 122.9	13:10.3, 23:3.6
(CF ₃) ₂ CFCF ₂ CF ₃	24	36	73.3, 186.0, 118.6, 81.6	12 = 14 : 5.7, 13 : 11.3, 23 : 2.5. 24 : 12.5. 34 : <0.8
(CF ₃)¢C	18	32	65 . 3	
^a Gegen internes	CFC13,	positives Vor	zeichen entspricht höherem	Feld. ^b Die Nummerierung

folgt der Formelschreibweise. ^CSignal höherer Ordnung

Die Entladung in $(CF_3)_4$ Ge führt ebenfalls zu nahezu quantitativer Zersetzung. Das Emissionsspektrum unterhalb 300 nm zeigt den ${}^1B_1 \rightarrow {}^1A_1$ -Ubergang des CF_2 , überlagert von den Atomlinien des Germaniums [12]. Auf Grund des hohen C_2F_6 -Anteils kann davon ausgegangen werden, daß primär die Spaltung der schwachen Ge-C-Bindung [13, 14] erfolgt. Die Folgeprozesse (Schema 1) sind insbesondere durch Fluorabstraktion durch Germanium gekennzeichnet.

Der Einsatz von $(CF_3)_3$ GeI führt im wesentlichen zur gleichen Produktverteilung, wobei zusätzlich CF_3I , C_2F_3I , $n-C_3F_7I$, $i-C_3F_7I$ sowie Spuren von CF_3CFI_2 erhalten wurden.

DANKSAGUNG

Mein Dank gilt dem Ministerium für Wissenschaft und Forschung des Landes Nordrhein-Westfalen für die Bereitstellung von Sachmitteln.

LITERATUR

- 1 R.J. Lagow und J.A. Morrison, Adv. Inorg. Rad. Chem., 23 (1980) 177.
- 2 L.J. Turbini, R.E. Aikman und R.J. Lagow, J. Amer. Chem. Soc., <u>101</u> (1979) 5833.

- 3 R.J. Lagow, L.L. Gerchman, R.A. Jacob und J.A. Morrison, J. Amer. Chem. Soc., <u>97</u> (1975) 518.
- 4 R. Eujen und R.J. Lagow, Inorg. Chem., <u>14</u> (1975) 3128.
- 5 M. Schmeisser, R. Walter und D. Naumann, Z. Anorg. Allg. Chem., <u>464</u> (1980) 233.
- 6 L.L. Knunyants, Y.F. Komissarov, B.L. Dyatkin und L.T. Lantseva, Izv. Akad. Nauk. SSR, Ser. Khim., <u>4</u> (1973) 943.
- 7 R.J. Lagow, R. Eujen, L.L. Gerchman und J.A. Morrison, J. Amer. Chem. Soc., <u>100</u> (1978) 1722.
- 8 A.P. Stefani, in Fluor. Chem. Rev., Vol. 5, (ed.P.Tarrent), Dekker, New York, (1971) p. 115.
- 9 M.D. Scanlon und R.J. Hanrahan, J. Fluor. Chem. <u>16</u> (1980) 199.
- 10 Quach-Tat-Trung, G. Durocher, P. Sauvageau und C. Sandorfy, Chem. Phys. Lett., <u>47</u> (1977) 404.
- 11 T. Yasumura und R.J. Lagow, Inorg. Chem., 17 (1978) 3108.
- 12 A.N. Zaichl, V.K. Prokofev, S.M. Raiskii, V.A. Slavnyi und E.Ya. Shreider, Tables of Spectral Lines, IFI/Plenum, New York, (1970).
- 13 R. Eujen und H. Bürger, Spectrochim. Acta, Part A, <u>35</u> (1979) 541.
- 14 H. Oberhammer und R. Eujen, J. Mol. Struct., 51 (1980) 211.